

For Scope of Accreditation Under Certificate Number: 2955.09

Choose certainty.
Add value.

EMC Technical Report

Prepared For: Johnson Outdoors Marine Electronics, Inc.

Model Covered: Helix 7X CHIRP MSI GPS G3N

Model Variants: See Product Description

In Accordance with the Conformity Assessment Procedure for Electromagnetic Interference (RRA Announce 2018-99, Oct 12, 2018)

Product Standard: Annex 8-1 (KN 301 489-1) Annex 8-3 (KN 301 489-17)

**Emissions Product Standard(s): Annex 8-1 (KN 301 489-1)
Annex 8-3 (KN 301 489-17)**

Report Number: AT72144771.4N0

Report Revision: A

Report Issue Date: January 14, 2019

This report contains Page 20 pages

America

TÜV SÜD America Inc., 5945 Cabot Parkway, Suite 100 Alpharetta, GA 30005
Tel: (678) 341-5900. Website: www.TUVamerica.com

Project Manager:

A handwritten signature in black ink, appearing to read "Arthur D. Sumner".

Arthur Sumner
EMC Engineer
TÜV SÜD America Inc.

Reviewed by:

A handwritten signature in black ink, appearing to read "R. McG".

Ryan McGann
Team Leader
TÜV SÜD America Inc.

This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

This test report shall not be reproduced except in full. This report may be reproduced in part with prior written consent of TÜV SÜD America Inc. The results contained in this report are representative of the sample(s) submitted for evaluation.

REVISION HISTORY

Report Number: AT72144771.4N0

Manufacturer: Johnson Outdoors Marine Electronics, Inc.

Model: Helix 7X CHIRP MSI GPS G3N

Project Information Sheet

Applicant Details

Manufacturer: Johnson Outdoors Marine Electronics, Inc.
Street Address: 678 Humminbird Lane
City, State/Province and Postal Code: Eufaula, AL 36027
Country: USA
Contact: Seth Bergman
Phone: 334-687-6613
Fax:
Email: sbergman@johnsonoutdoors.com

Sample Information

Model: Helix 7X CHIRP MSI GPS G3N
Model Variant(s): See Product Description
Environment of Use: Residential
Sample Receive Date: August 13, 2018
Sample Receive Condition: Good
Test Mode Description: Battery powered, monitoring depth via sonar, and GPS active.
Highest Data Rate: 800MHz
Source: Main processor

Product Description

The Humminbird Helix 7X CHIRP MSI GPS G3N (411080-1M) is a fishfinder/GPS product with side imaging sonar capability. It is comprised of a keypad, 7" LCD display, two SD card slots, internal GPS, Bluetooth capability, Ethernet capability, transducer and power cable. All G3N CHIRP model variations are built exactly the same. The non G3N variations do not have Bluetooth. They all differ by installed options, SELV circuits and languages.

HELIX 7 CHIRP GPS G3
HELIX 7X CHIRP GPS G3
HELIX 7 CHIRP MDI GPS G3
HELIX 7X CHIRP MDI GPS G3
HELIX 7 CHIRP MSI GPS G3
HELIX 7X CHIRP MSI GPS G3
HELIX 7 CHIRP GPS G3N
HELIX 7X CHIRP GPS G3N
HELIX 7 CHIRP MDI GPS G3N
HELIX 7X CHIRP MDI GPS G3N
HELIX 7 CHIRP MSI GPS G3N
HELIX 7X CHIRP MSI GPS G3N (Tested variant)
ICE HELIX 7 CHIRP GPS G2N

Test Information

Test Start Date: August 13, 2018
Test End Date: August 17, 2018
Emissions Pre-scan Site: SAC
Final Emissions Site: OATS
EMI Freq. Band: 10kHz - 4GHz
Radiated Emissions Equipment
Class: Class B

Test Methods/Standards

Applied

(Check all that apply):

- RRA Public Notification 2018-99, Oct 12, 2018 Korea Technical Requirements for Electromagnetic Compatibility
- KN 301 489-1 (Annex 8-1), KN 301 489-17 (Annex 8-3) Test Methods for Electromagnetic Compatibility with RRA Announce 2018-99, Oct 12, 2018

Table of Contents

SECTION A: GENERAL INFORMATION.....	6
1.0 INTRODUCTION.....	6
1.1 Scope	6
1.2 Purpose.....	6
1.4 Performance Criteria.....	6
2.1 Test Facilities	7
2.2 Laboratory Accreditations/Recognitions/Certifications	7
2.3 Test Environment.....	7
2.4 Test Equipment Calibration Statement.....	7
3.0 EQUIPMENT UNDER TEST (EUT)	7
3.1 Manufacturer	7
3.2 Modifications.....	8
3.3 System Block Diagram and Support Equipment	9
3.4 Observations	10
SECTION B: EMISSIONS – TEST INFORMATION AND RESULTS.....	11
4.0 RADIATED AND CONDUCTED EMISSIONS	11
4.1 RADIATED EMISSIONS	11
4.1.1 Test Site Description	11
4.1.2 Test Equipment	15
4.1.3 Test Methodology	16
4.1.4 Test Setup Photographs	17
4.1.5 Test Data.....	18
4.2 CONDUCTED EMISSIONS	19
4.2.1 Test Justification	19
SECTION D: MEASUREMENT UNCERTAINTY	20
SECTION E: CONCLUSION	20

SECTION A: GENERAL INFORMATION

1.0 Introduction

1.1 Scope

This report documents conformance with the requirements set forth in Annex 8-1 (KN 301 489-1) with respect to EN 301 489-1 V2.2.0 and details the results of testing performed on August 13, 2018 through August 17, 2018 on the model Helix 7X CHIRP MSI GPS G3N manufactured by Johnson Outdoors Marine Electronics, Inc.

1.2 Purpose

Testing was performed to evaluate the EUT with regard to EMC regulatory requirements in accordance with the European Unions CE Marking arrangements.

1.4 Performance Criteria

1.4.1 Emissions Performance Criteria

For model Helix 7X CHIRP MSI GPS G3N the limits which apply are Class B. These limits are found in Table 1.4.1-1 below:

Table 1.4.1-1 Emissions Limits Class B

Emission Type	Frequency Range (MHz)	Quasi-Peak/Peak ⁴ Limits	Average Limits
Conducted Class B (Mains Port) (dB μ V)	0.15 to 0.50	66 to 56 ¹	56 to 46 ¹
	0.50 to 5.00	56	46
	5.00 to 30.0	60	50
Conducted Class B (Telecom Ports)	0.15 to 0.5	84 to 74 (V) ^{1,2} 40 to 30 (I) ^{1,3}	74 to 64 (V) ^{1,2} 30 to 20 (I) ^{1,3}
	0.5 to 30	87 (V) ² 43 (I) ³	74 (V) ² 30 (I) ³
Radiated Class B at 3 Meters (dB μ V/m)	30.0 to 230.0	40.5	
	230.0 to 1000.0	47.5	
	1000 to 3000	70	50
	3000 to 6000	74	54

1 - Decreases Linearly with Logarithm of Frequency

Note: Lower Limit Applies at Transition Frequency

2 - (V) Indicates voltage limits in dB μ V

3 - (I) Indicates current limits in dB μ A

4 - Limits <1GHz are Quasi-Peak and Average >1GHz

Model: Helix 7X CHIRP MSI GPS G3N

Report No: AT72144771.4N0

2014/30/EU

2.0 Test Facilities & Environment

2.1 Test Facilities

All testing was performed at the following address:

TÜV SÜD America Inc.
5945 Cabot Parkway
Suite 100
Alpharetta, GA 30005
Phone: (678) 341-5900
www.TUVamerica.com

The laboratory is fully equipped to carry out the tests outlined in section 1.0

2.2 Laboratory Accreditations/Recognitions/Certifications

TÜV SÜD America, Inc. is accredited to ISO/IEC 17025 by the American Association for Laboratory Accreditation/A2LA accreditation program and has been issued certificate number 2955.09 in recognition of this accreditation. Unless otherwise specified, all test methods described within this report are covered under the ISO/IEC 17025 scope of accreditation.

2.3 Test Environment

Unless otherwise specified by the generic or product standard, the EUT was evaluated within the climate conditions of the EUT as specified by the manufacturer.

Where the manufacturer does not specify climate parameters for the EUT, all test are performed within the climate parameters given below:

- Ambient temperature 15° to 35° C
- Relative Humidity 30% to 60%
- Atmospheric Pressure 860mbar to 1060mbar

2.4 Test Equipment Calibration Statement

Test equipment used for each test is specified in the relevant sections of this test report. Unless expressly given, all test equipment is calibrated on an annual basis, where applicable. All test equipment is operated within the climate specifications as defined by the manufacturer.

3.0 Equipment Under Test (EUT)

3.1 Manufacturer

Johnson Outdoors Marine Electronics, Inc.
678 Humminbird Lane
Eufaula, AL 36027

Seth Bergman
334-687-6613

sbergman@johnsonoutdoors.com

Model: Helix 7X CHIRP MSI GPS G3N

Report No: AT72144771.4N0

2014/30/EU

3.2 Modifications

Table 3.2-1 below describes any modification required to bring the EUT into compliance with the test standard. Photographs of the modifications, if any, are contained in appendix a.

Table 3.2-1: EUT Modifications

<input checked="" type="checkbox"/> Modifications <u>were not</u> required to bring the EUT into compliance with the requirements. <input type="checkbox"/> Modifications <u>were</u> required to bring the EUT into compliance with the requirements.					
<u>Modification Type</u>	<u>Component/Material Description (Model)</u>	<u>Location</u>	<u>Test Required For</u>	<u>Specific Need</u>	<u>Photograph Designation</u>

3.3 System Block Diagram and Support Equipment

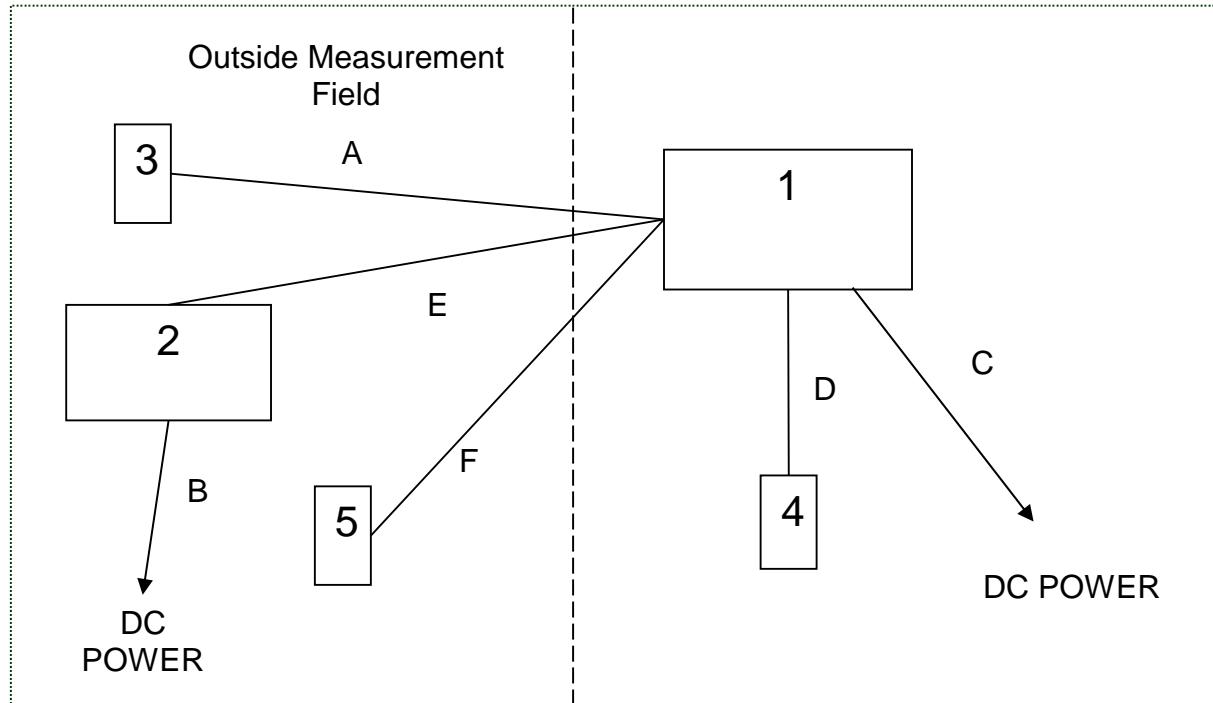


Figure 3.3-1: System Block Diagram

Table 3.3-1: EUT and Support Equipment Description

Item #	Type Device	Manufacturer	Model/Part #	Serial #
1	EUT	Johnson Outdoors	HELIX 7 CHIRP G3	n/a
2	Auxiliary Equipment	Johnson Outdoors	HELIX 7	n/a
3	GPS antenna	Humminbird	AS*GPS HS	12071842-0039
4	Transducer	Johnson Outdoors	n/a	n/a
5	Speed sensor	Johnson Outdoors	n/a	n/a

Table 3.3-2: Cable Description

Cable #	Cable Type	Length	Shield	Termination
A	GPS	20'	No	1 - 3
B	DC leads	4'	No	2 - DC power
C	DC leads	5'	No	1 - DC power
D	Transducer cable	20'	No	1 - 4
E	Ethernet	30'	No	1 - 2
F	Speed Sensor cable	20'	No	1 - 5

Model: Helix 7X CHIRP MSI GPS G3N

Report No: AT72144771.4N0

2014/30/EU

3.4 Observations

Any general observations regarding any part of the evaluation are given in table 3.4-1.

Table 3.4-1: Observations

<u>Observation No.</u>	<u>Description</u>

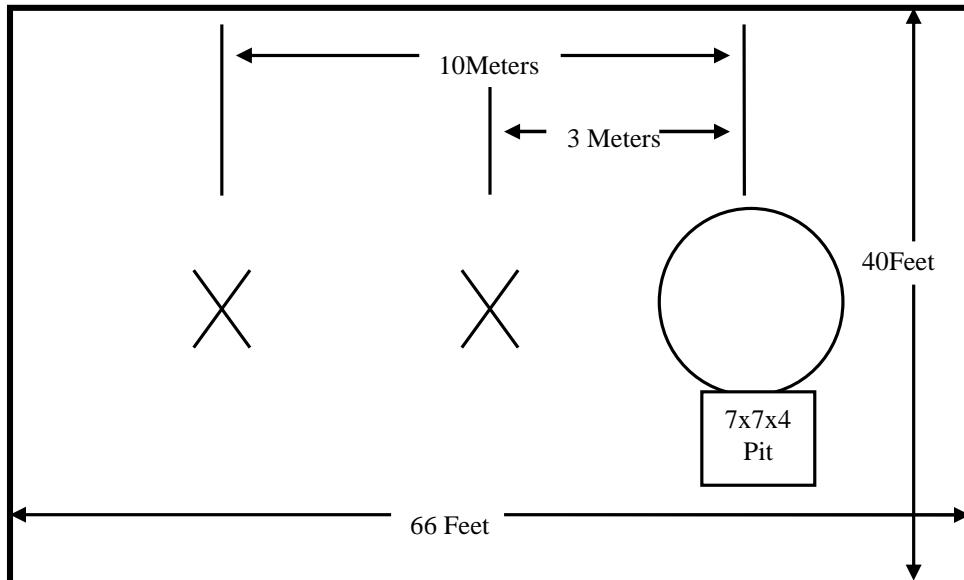
SECTION B: EMISSIONS – TEST INFORMATION AND RESULTS

4.0 Radiated and Conducted Emissions

4.1 Radiated Emissions

4.1.1 Test Site Description

4.1.1.1 Open Area Test Site (Buford Facility)


The open area test site consists of a 40' x 66' concrete pad covered with a perforated electro-plated galvanized sheet metal. The perforations in the sheet metal are 1/8" holes that are staggered every 3/16". The individual sheets are placed to overlap each other by 1/4" and are riveted together to provide a continuous seam. Rivets are spaced every 3" in a 3 x 20 meter perimeter around the antenna mast and EUT area. Rivets in the remaining area are spaced as necessary to properly secure the ground plane and maintain the electrical continuity.

The entire ground plane extends 12' beyond the turntable edge and 16' beyond the antenna mast when set to a 10 meter measurement distance. The ground plane is grounded via 4 - 8' copper ground rods, each installed at a corner of the ground plane and bound to the ground plane using 3/4" stainless steel braided cable.

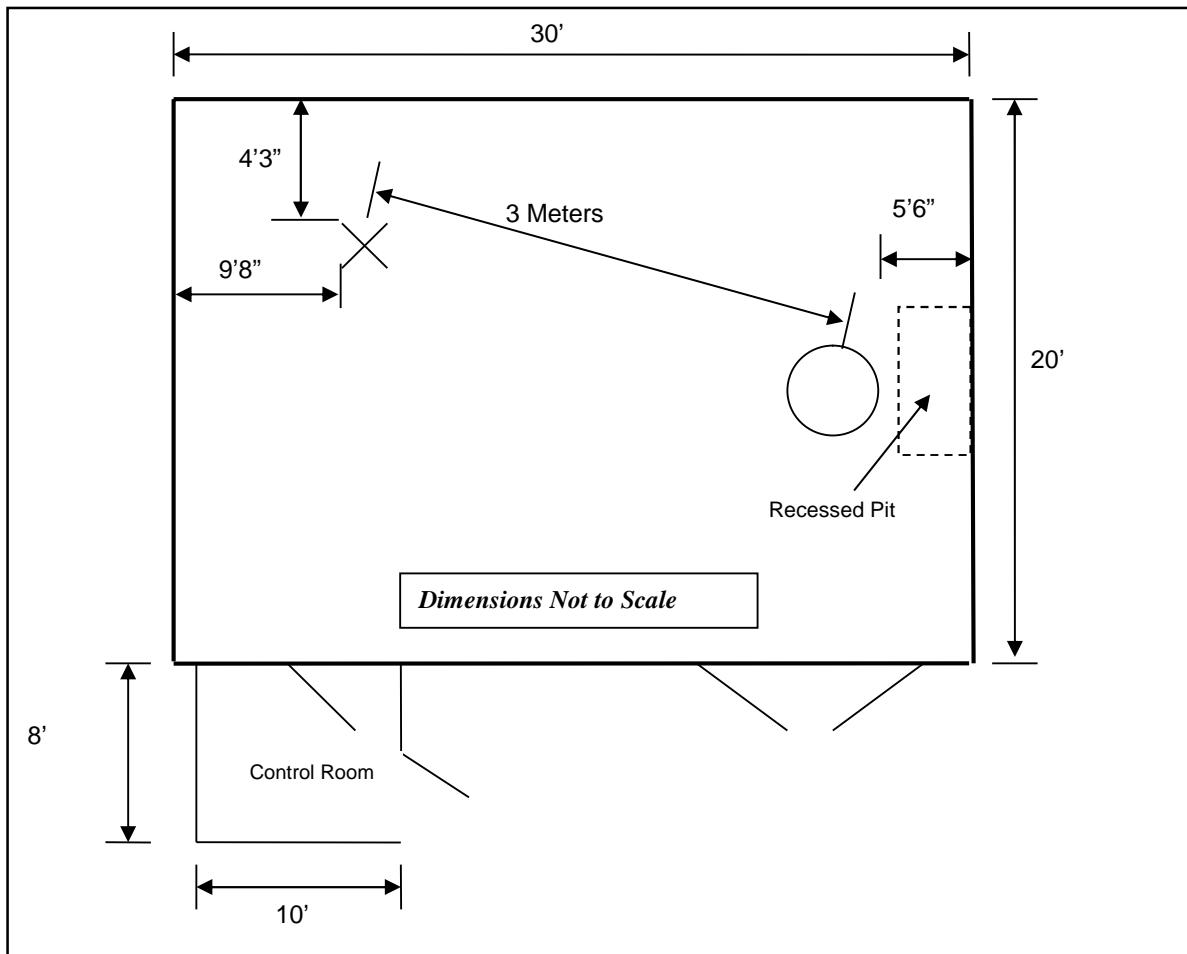
The turntable is an all aluminum 10' flush mounted table installed in an all aluminum frame. The table is remotely operated from inside the control room located 40' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Adjacent to the turntable is a 7' x 7' square and 4' deep concrete pit used for support equipment if necessary. The pit is equipped with 5 - 4" PVC chases from the pit to the control room that allow for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit. The pit is covered with 2 sheets of 1/4" diamond style reinforced steel sheets. The sheets are painted to match the perforated steel ground plane; however the underside edges have been masked off to maintain the electrical continuity of the ground plane. All reflecting objects are located outside of the ellipse defined in ANSI C63.4.

A diagram of the Open Area Test Site is shown in Figure 4.1.1.1-1 below:

Figure 4.1.1.1-1: Open Area Test Site

4.1.1.2 Semi-Anechoic Chamber (Buford Facility)


The Semi-Anechoic Chamber Test Site consists of a 20' x 30' x 18' shielded enclosure. The chamber is lined with Toyo Ferrite Grid Absorber, model number FFG-1000. The ferrite tile grid is 4" x 4" x $\frac{3}{4}$ " thick and weighs approximately 1.4lbs. These tiles are mounted on steel panels and installed directly on the inner walls of the chamber.

The turntable is 150cm in diameter and is located 160cm from the back wall of the chamber. The chamber is grounded via 1 - 8' copper ground rod, installed at the center of the back wall, it is bound to the ground plane using 3/4" stainless steel braided cable. The turntable is all steel, flush mounted table installed in an all steel frame. The table is remotely operated from inside the control room located 25' from the turntable. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Behind the turntable is a 3' x 6' x 4' deep shielded pit used for support equipment if necessary. The pit is equipped with 1 - 4" PVC chase from the turntable to the pit that allow for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit.

To comply with the requirements of the test methods given on page 3, RF absorbing foam was placed inside the chamber in a configuration that provided the best results. First, an 8 ft. patch of 12" tall absorber was placed on the floor between the turntable and the receiving antenna. This absorber meets the absorption requirements specified in ANSI C63.4:2009. Next, three vertical structures (Fences) were created and covered with 8" pyramidal RF absorbing foam, two 4 ft. x 4 ft. and one 6 ft. x 4 ft. These fences were placed at locations to prevent high energy signals from reaching the back chamber wall and reflecting back to the receive antenna.

A diagram of the Semi-Anechoic Chamber Test Site is shown in Figure 4.1.1.2-1 below:

Figure 4.1.1.2-1: Semi-Anechoic Chamber Test Site

4.1.1.3 Semi-Anechoic Chamber Test Site (Alpharetta Facility)

The Semi-Anechoic Chamber Test Site consists of a 20'W x 30'L x 20'H shielded enclosure. The chamber is lined with ETS-Lindgren Ferrite Absorber, model number FT-1500. The ferrite tile 600 mm x 600 mm (2.62 in x 23.62 in) panels and are mounted directly on the inner walls of the chamber shield.

The specular regions of the chamber are lined with additional ETS-Lindgren PS-600 hybrid absorber to extend its frequency range up to 18GHz and beyond.

The turntable is a 2m ETS-Lindgren Model 2170, and installed off the center axis is located 5'6" from the back wall of the chamber. The chamber is grounded via 1 - 8' copper ground rod, installed at the center of the back wall, it is bound to the shield using #8 solid copper wire.

The antenna mast is an EMCO 1060 and is remotely controlled from the control room for both antenna height and polarization.

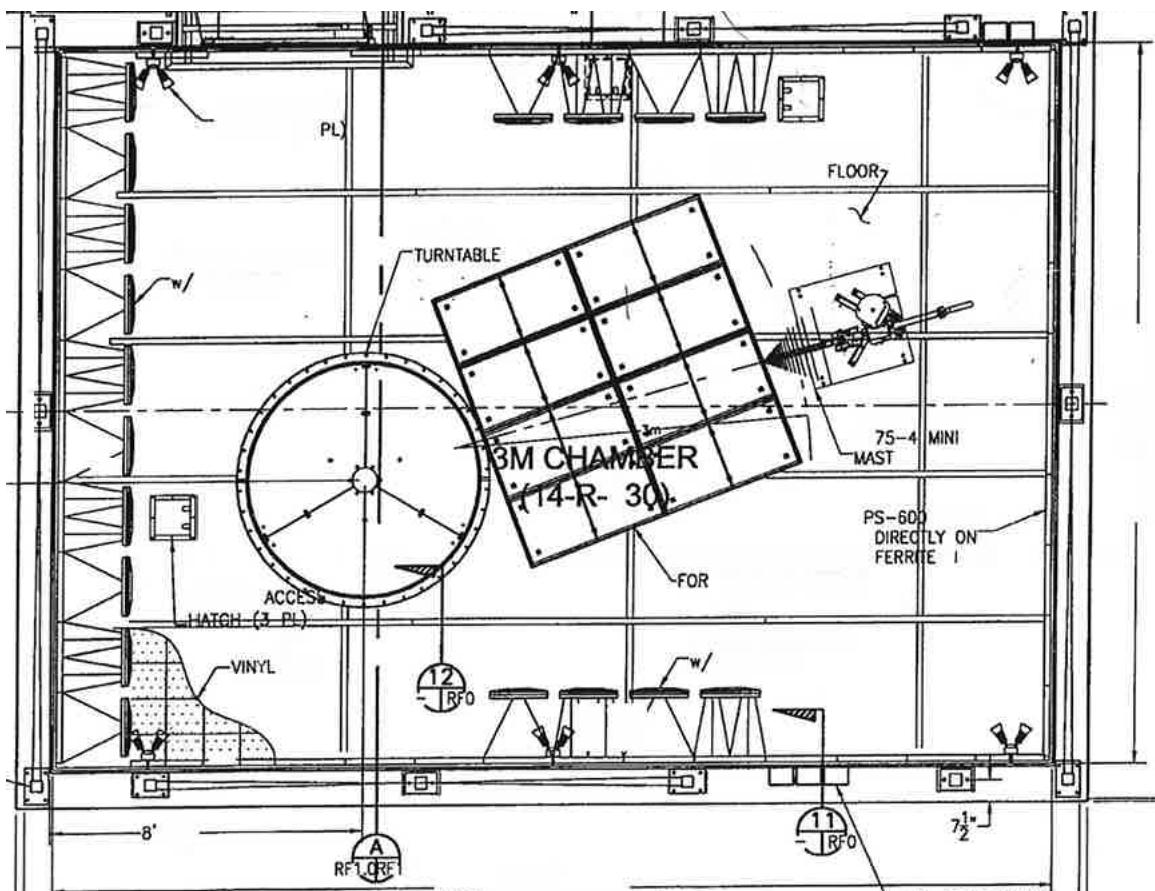


Figure 4.1.1.3-1: Semi-Anechoic Chamber Test Site (Alpharetta Facility)

Model: Helix 7X CHIRP MSI GPS G3N

Report No: AT72144771.4N0

2014/30/EU

4.1.2 Test Equipment

Table 4.1.2-1 identifies all equipment used for radiated emissions respectively.

Table 4.1.2-1 Test Equipment – Radiated Emissions

Table 4.1.2-2 Test Equipment – SAC Radiated Emissions (2018)

Asset ID	Manufacturer	Model	Equipment Type	Serial Number	Last Calibration Date	Calibration Due Date
30	Spectrum Technologies	DRH-0118	1-18GHz Horn Antenna	970102	05/09/2017	05/09/2019
90	Electro-metrics	LPA25	LPA Antenna	1476	01/03/2018	01/03/2020
144	Omega	RH411	Temp / Humidity Meter	H0103373	10/24/2018	10/24/2020
213	TEC	PA 102	Amplifier	44927	07/19/2018	07/19/2019
338	Hewlett Packard	8449B	High Frequency Pre-Amp	3008A01111	07/11/2017	07/11/2019
412	Electro Metrics	LPA-25	Log Periodic Antenna	1241	08/22/2018	08/22/2020
819	Rohde & Schwarz	ESR26	EMI Test Receiver	101345	11/06/2018	11/06/2019
836	ETS Lindgren	SAC Cable Set	SAC Cable Set includes 620, 837, 838	N/A	05/01/2018	05/01/2019
853	Teseq	CBL 6112D; 6804.17.A	Bilog Antenna; Attenuator	51616; 20181110A	10/15/2018	10/15/2019

NCR = No Calibration Required

Table 4.1.2-3 Test Equipment – Open Area Test Site (2018)

Asset ID	Manufacturer	Model	Equipment Type	Serial Number	Last Calibration Date	Calibration Due Date
90	Electro-metrics	LPA25	LPA Antenna	1476	01/03/2018	01/03/2020
193	ACS	OATS cable Set	Consists of Cables 832, 360, 284	193	05/01/2018	05/01/2019
211	Eagle	C7RFM3NFM	FM Band Reject Filter	HLC-700	10/31/2018	10/31/2019
213	TEC	PA 102	Amplifier	44927	07/19/2018	07/19/2019
731	EMCO	3104	Bicon Antenna	2659	11/09/2016	12/09/2018
819	Rohde & Schwarz	ESR26	EMI Test Receiver	101345	11/06/2018	11/06/2019

NCR = No Calibration Required

4.1.3 Test Methodology

4.1.3.1 Pre-Scans

Radiated pre-scans are performed on all EUTs in either the 3m Semi-Anechoic or the 3m Fully-Anechoic Chamber. Final emission testing for Class A equipment is performed on the 3/10m Open Area Test Site (OATS) as described in section 4.1.1.1. Final emission testing on Class B equipment can be performed either in the 3m Semi-Anechoic chamber described in section 4.1.1.2 or on the OATS.

Pre-scans are a method by which the 10 highest emissions can be identified for final evaluation. This is achieved by taking automated emission snapshots of the EUT at various azimuths and antenna heights. The software is programmed to perform a peak sweep of the band using the maxhold function. This sweep is performed every 90° in both horizontal and vertical polarities and at antenna heights of 100cm and 300cm. Although not a fully maximized scan, the pre-scan gives a good indication of pass or fail.

4.1.3.2 Final Scans

Radiated emissions measurements were made over the frequency range of 30MHz to 4GHz. Quasi-Peak measurements are taken with the Spectrum Analyzer's resolution bandwidth was set to 120KHz and video bandwidth set to 300 kHz for measurements below 1000MHz. Average measurements above 1000MHz are taken using measurement instruments average detector. The calculation for the radiated emissions field strength is as follows:

$$\begin{aligned}\text{Corrected Reading} &= \text{Analyzer Reading} + \text{Cable Loss} + \text{Antenna Factor} \\ \text{Margin (dB)} &= \text{Applicable Limit} - \text{Corrected Reading}\end{aligned}$$

4.1.3.3 Test Criteria

The EUT must meet the Class A Limits as given in table 1.2-1.

4.1.3.4 Test Justification

- No justification - The EUT was tested per the appropriate test methods and test plan.
- The test method, standard, and/or test plan was deviated from for the following reason:

4.1.4 Test Setup Photographs

Figure 4.1.4-1: Radiated Emissions - Front View

Figure 4.1.4-2: Radiated Emissions - Rear View

Model: Helix 7X CHIRP MSI GPS G3N**Report No: AT72144771.4N0****2014/30/EU****4.1.5 Test Data**

Final tabulated radiated emissions data are reported in the Test Data Table below:

Test Parameters:

Test Date:	10/11/2018 / 1/3/2019	Temperature (°C)	24
Technician:	A Sumner / T Leeson	Humidity (%)	46
Equipment Class:	Class B	Barometric Pressure (mBar)	1017
Tested Modes:	GPS Active; Sonar Measuring Depth, Speed/Temp Sensor Active		
AC Input Power:	N/A		
DC Input Power:	12Vdc		

Test Data Table:

Measurement Distance:												
Frequency (MHz)	Measured Level (dBuV)		Antenna Polarity (H/V)	Antenna Height (cm)	Turntable Position (o)	Correction Factors (dB)	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
	Pk	Qpk/Av					Pk	Qpk/Av	Pk	Qpk/Av	Pk	Qpk/Av
43.47	41.30	36.50	H	100	360	-12.64	-----	23.86	-----	30.0	-----	6.1
62	42.50	37.40	V	100	360	-13.89	-----	23.51	-----	30.0	-----	6.5
248.6	25.20	15.70	V	100	180	-10.60	-----	5.10	-----	37.0	-----	31.9

Qpk = Quasi-Peak Measurement or Limit (< 1GHz)

AV = Average Measurement or Limit (>1GHz)

Measurement Distance:												
Frequency (MHz)	Measured Level (dBuV)		Antenna Polarity (H/V)	Antenna Height (cm)	Turntable Position (o)	Correction Factors (dB)	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
	Pk	Qpk/Av					Pk	Qpk/Av	Pk	Qpk/Av	Pk	Qpk/Av
99.4	54.50	48.00	H	100	181	-11.52	-----	36.48	-----	40.5	-----	4.0
48.6	49.00	45.10	V	100	105	-13.16	-----	31.94	-----	40.5	-----	8.5
168.55	45.60	42.20	V	100	109	-6.93	-----	35.27	-----	40.5	-----	5.2
297.85	52.60	49.80	V	100	231	-9.76	-----	40.04	-----	47.5	-----	7.4

Qpk = Quasi-Peak Measurement or Limit (< 1GHz)

AV = Average Measurement or Limit (>1GHz)

Notes:

Emissions data points obscured by local outside ambient noise were measured in a semi-anechoic chamber.

Model: Helix 7X CHIRP MSI GPS G3N

Report No: AT72144771.4N0

2014/30/EU

4.2 Conducted Emissions

4.2.1 Test Justification

No justification - The EUT was tested per the appropriate test methods and test plan.
 The test method, standard, and/or test plan was deviated from for the following reason:

This test is not applicable, because the EUT is not powered through an AC Mains power supply and does not physically connect to a public data network.

SECTION D: MEASUREMENT UNCERTAINTY

General

Measurement Uncertainty is based on the following publications:

- CISPR 16-4-2: Uncertainties, statistics and limit modeling – Uncertainty in EMC measurements
- The Guide to the Expression of Uncertainty in Measurement(GUM): 1995
- ANSI / NCSL Z540.2-1997 (R2002) U.S. Guide to Expression of Uncertainty in Measurement

Calculations for measurement uncertainty are available upon request.

Emissions:

Test Method	U_{Lab}	U_{CISPR}	Uncertainty Units
Radiated Emissions 30MHz-1000MHz	3.68	5.2	dB
Radiated Emissions 30MHz to 200MHz	3.79	5.2	dB
Radiated Emissions 200 to 1000MHz	3.62	5.2	dB
Radiated Emissions 1-18GHz	3.65	---	dB
Conducted Emissions .150k-30MHz	1.52	3.6	dB
Radiated Disturbances 5MHz to 30MHz	2.81	4.5	dB
Radiated Disturbances 30MHz to 950MHz	2.21	4.5	dB
Harmonic Current Emissions	1.7	---	%
Voltage Fluctuations & Flicker	1.7	---	%
Insertion Loss/Internal Calibrations	.65	---	dB
Radiated Immunity 80-1000MHz	1.21	---	dB
Conducted Immunity .150-80MHz	1.64	---	dB
Frequency Interpolations	.81 (ave)	---	dB

NOTE U_{cispr} resembles a value of measurement uncertainty for a specific test, which was determined by considering uncertainties associated with the quantities listed in CISPR 16-4-2:2003 Section 4.2. Where no value is given for U_{cispr} the procedure below does not apply.

Compliance or non-compliance with a disturbance limit shall be determined in the following manner.

If U_{Lab} is less than or equal to U_{cispr} in Table 5.0-1, then:

- compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

If U_{Lab} is greater than U_{cispr} , then:

- compliance is deemed to occur if no measured disturbance, increased by $(U_{\text{Lab}} - U_{\text{cispr}})$, exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance, increased by $(U_{\text{Lab}} - U_{\text{cispr}})$, exceeds the disturbance limit.

The calculated MU is much less than the internationally accepted MU, therefore an adjustment to the measured result as mentioned above is not necessary.

Immunity

The EUT was subjected to the appropriate test levels required by the standard with a confidence level of 95%(k=2).

SECTION E: CONCLUSION

The EUT is determined to meet the requirements as defined in the applicable regulations.